
-A189 124 'FE BOUNDARY PROBLEMS ARISING 
IN THE COIROL OF AR /I7-u- FLEXIBLE ROBOT ARM (U) MARYLAND UNIV BALTIMORE COUNTY

CATDNSVILLE DEPT OF MATHEMATIC T I SEIDMAN 24 SEP 87

UNCLASSIFIED AFOSR-TR-B7-i558 AFOSR-87-8190 F/G 6/3 MLE7mhhh



Wo1 1112.

11511111,011111

z ~r ~ HP



SECURITY CLASSIFICATION OF TIS PAGE FILE COPY
Form Approved,'-OnOTDOCUMENTATION PAGE OMB No. 0704-0188

r lb. RESTRICTIVE MARKINGS

a A D -A DISRIBUTIONAVAILABILITY OF REPORT

b LApproved for public releaSe2b DLL ... distribution unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NpJMBEFW)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a, NAME OF MONITORING ORGANIZATION

(If 
applicable)

6c. ADDRESS (Cty, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)I , AVO us -7 -Ocl 0

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO ACCESSION NO.

11. TITLE (Include Security Classification)

12. PERSONAL AUTHOR(S)

13a. TYPE OF REPORT 113b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) J15. PAGE COUNT

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necessary and identify by block number) ,,. ,.

-,. :. j: . : ,

ICC ___

i:. -'or -.

vI P

20 DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
0 UNCLASSIFIED/UNLIMITED 0 SAME AS RPT 0 DTIC USERS

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

DO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE



AFOR-TR" 87- 1 558

September 24, 1987

FREE BOUNDARY PROBLEMS ARISING IN THE
CONTROL OF A FLEXIBLE ROBOT ARM 2

Thomas I. Seidman
Department of Mathematics and Statistics
University of Maryland Baltimore County

Catonsville, MD 21228 USA
(BITNET: seid man@umbc, arpanet: seidman@umbc3)

ABSTRACT: Modeling of a flexible robot arm mounted at a prismatic joint leads
to a moving boundary problem. In a control-theoretic context with joint motion as

-control, these become free boundary problems. Some problems are discussed for trans-
verse vibration (the beam equation) but the principal result is an eract controllability
theorem for longitudinal vibration (the wave equation).

Key words: free boundary, robot arm, prismatic joint, beam equation, feedback, wave
equation, exact controllability

1. INTRODUCTION

We consider the modeling of a robot, arm consisting of a flexible beam with a prismatic
joint - that is, a mounting of the arm in which one end is clamped but permits

controlled in-out motion so the extension of the arm (i.e., the relevant portion of
- ,, the beam) has variable length f = e(l). In this case 'flexihle' means only that the

dynamics of the beam must be modeled by a partial differential equation: treatment.
V-02 as a rigid body is ani inadequate approximationi in thai, vilra!,ion (i.e., Ctme-dependenit

%deviation from the nominal rigid-body position) is a significant aspect of the problem.
The space-time domain on which we consider the dynamics is thus

(11) - {(t,,): 0 < t - 7'; 0 - I

Thiq research his been pau%,illv 'Iplvllfed by the .U.S. Air Force Office of Scientific Reseaich
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where s denotes length (in material coordinates, measured from the tip of the arm).
This is certainly a moving boundary problem. From a control-theoretic point of view,
we note that the significant question is precisely the determination of the control e(.)
so we will have a free boundary problem.

In the next section we analyze purely longitudinal vibration of such a beam. This

is not, of course, the problem of greatest practical concern but we will be able to
.: treat it with some degree of completeness - showing exact controllability, subject

only to some rather mild conditions. The more significant problem of treating trans-
verse vibration in this context requires more extensive analysis than can be presented

here. A brief discussion of such problems3 is presented in Section 3. For our present
purposes we take the beam to be (nominally) horizontal along the x-axis of the 'lab-
oratory coordinate system' with the joint rigidly fixed 4 at the origin. Included in our
nodel is a load of mass m supported at the free end of the arm. We assume that the
system is (except for the boundary condition at the joint) conservative - dissipative
mechanisms such as friction and, e.g., air resistance can be neglected.

2. EXACT CONTROLLABILITY

lere we restrict our consideration to the purely longitudinal vibrations of the arm.

Suppose we let x(t,s) be the actual position (in the laboratory coordinate system)
of the material point s at time t. The formulation of the dynamics takes a much
simpler form if we take the unknown to be v := Is -I- xi so, e.g., v = C at the joint. For
a. hyperelastic stress-strain laws one can easily show, using Hamilton's Principle of
Stationary Action and a bit of manipulation, that v must satisfy the one-dimensional
wave equation:
(2.1) p V V,,, vo Q T

• with the boundary conditions:

(2.2) ,,- P at the joint: s = t = C(),

(2.3) in 1 - (,, ) at the tip: s = 0.

. Work on s,ch prohlenis has l e,, initiated Iby P.K.C. Wang and, indeed, 121 sholdI be ack,,owledged

as the principal st imnihits to the pi eeitt work. Many interestini and important problems remain open.
4hi practice one wonid experc, thia the joint may, it elf, he montiiIed on a moving stpport (e.g.,

on another arm) and/or thi lwi i- roipliulg with a Controlled iota tirit a'mim lid a vertical axis. One
muiglht also wish to include the imt 111t math Iie nuounhtI iq ,otmlltj rigid yet subject, to vibratiin

giving 'noise' in the boundlary ,l ,h I heie; rompare II.
'We make the usual assimipt i,.m th.at tIle evi.,tic potevitial %V = 4(, r) is convex iin r with mnininmuml

at. l(.t, 0) = 0. We set 0'(s, r) -- ', (,. r) .inI let p(.*) be the mass density.



To this we adjoin specification of initial conditions:

(2.4) e(o) = to and v = v° , Vt = wo on [0, J at t =0,

subject to (2.2): vo(f') = to as a compatibility condition.
Suppose, in addition to (2.4), one were also to specify a target state for the

terminal time t = T:

(2.5) t(T)=eT and v = v r , vt = wT on [0, eTIat t = T,

again subject to (2.2). Our object is to prove exact controllability:

There should be a time T > 0 and an admissible control function t(.) on
[0,TI such that (2.1), (2.4), (2.2), (2.3) give (2.5)

under suitable (mild) hypotheses. By "admissible" we mean that t(O) - to, t(T)

and'

(2.6) Vt(t 1 ) - f(t 2)1 5 r-1t1 - t21 with K. < I

which will ensure that the free boundary curve: r := {s = t(t)} is 'time-like' so a
characteristic Is ± t = const.1 can intersect r only once (transversely).

For simplicity of exposition we present, in detail only the linear case' for which

(2.1) reduces to
(2.7) ,,,, = V,, On Qr.

In this case the method of characteristics gives the simple decomposition

(2.8) v(t,s) = f(s + t) + g(s - t)

into left- and right-moving waves. Note that differentiating (2.8) gives the identities:

(2.9) f'(s + t) = ,.(t,s) + v(t,s)1/2,

9'(s - t) = I v, (t,s) -- v (t, s) 1/2.

The representation (2.8) gives the general (weak) solution of (2.7) and, in terms
of f,g, the boundary conditions (2.2), (2.3) now become:

(2.10) ff(t) ± ) + g((t) - t) = 4 ,

(2•11) mf"(,q) t- g"( -s) f (s) + g,(--s)•

"'Physically, this corresponds to a ifeqvtif.en, that the coitrolled nooto af, Che joint i,,ii1t always
be lower than the wave propalation .Rpeed along the beam. For smooth e( ) it is equivalent to
Ie(tL < x < 1.

"l.e., *(s, r) = l1(s)r2 so ip = 13r. We firther simplify by issuming the beam is homogeneous so,
i, i, suitable units, P = 0 = 1.



Note that we can differentiate (2.10) with respect to t to obtain an ODE for C:

(2.12) f(+t0 - g'( - t)
1 P + [ 0( ± t) - 01

F'romi the inequality: lIu - vi + lit + id 5 2 max~uli, IvI} it would follow that (2.12) is

well-behaved -- indeed, giving (2.6) - if we were always to have

where defined.
Trhe initial data v ,W' in (2.4) determine f,g on 10o using (2.9) with t 0. Tn

particular, we have g' determined on Dg := {(t,s) :0 < s - t < t'}. We then can use

(2.1t1) as an ODE for g' to obtain:

*(2.14) g'(,s' ± Iv w0 (-s) + e$/mwo(0)

+,M f ±W1(r) dr

for -t' < .s < 0, which defines g' from (2.4) on D" {(t,s) : -eo < s - t < 0).
Finally, we note that v(l 0 ,0) is determined by the data of (2.4).

Similarly, we note that the target data in (2.5) directly determine f' on Df0
{(t,): 7' < .s + t < t' + TI, using (2.9) with t = T, and give,8 now using (2.11) as
an ODE for f':

(2.15) f'(T -T) 2IIV.T +WTI()±+er/m1WT(0)

+M I~v + WTI(r) dr

for 0 < r < t, which defines f' from (2.5) on Df := (t,s) : T -T e7 < ± + t T).

From (2.5) we also, then, determine v(T - tT,0).
WWe now choose Cauchy data on the segment: .9: (t,O) < t T tTI

taking v(t,0) linear in t, making vt constant:

V(2.16) vt(t,0) = =v (T f' 0T~)v f,0
T - ±P + V]

on g. This gives v,(I,0) =muut 0 by (2.3) with V/(r.) r. Using (2.9), we now
h ave
(2.17) f= c/2 M]on ~ ~ ) '<. +t T-fj

= c/2 onr _f {(,) : tT- T < s' - t < -tn}.

"T0 avoid any possibility of coitflort. we .istiiie that T iccho~eii so T > Lo 4-tT' givitIg _L0 < t- T
and e' < T + tT; later we will qtreiugthii I his reqiiireniit to (2.18). Note that the computation, here,
from (2.5) is independent (to within Itrauslation in t) of the particular choice of T'.



Note that if we require that

(2.18) T > +e0 ± eTl ± Iv(T - e,o) -V( ,0)1/K,

then (2.16), (2.17) give (2.13) on Df, D'. If we now impose the requirement that

(2.19) Iv,Itv0 I K.14 on [0,0,

I, IWI </ on

then (2.13) holds on PD, P directly from (2.9) and it easily follows from (2.14), (2.15),
that we will also have (2.13) on Pf,P .

Theoreni 1: Suppose one is given the data of (2.4), (2.5) subject to compatibility
with (2.2) and the condition (2.19) with r. < 1. (Assume w°, w r are continuous
and v, vT E C'.) Then there exists T > 0 and an admissible control function
f I(.) C'O, TJ such that the solution v of (2.7), (2.4), (2.2), (2.3) also satisfies (2.5).

'ROOF: As above, solve (2.7), (2.4), (2.3) on the triangle A0  {(t,s) : 0 <
. t,s; s + t < to} and (2.7), (2.5), (2.3) on Ar = {(t,s) : 0 < T - t,s; s-t < t - T}

,*- -' - obtaining, in particular, v(t 0 ,0) and v(T - er,0). Then choose T subject to

(2.18) and specify Cauchy data on g as above - i.e., (2.16) and v, = 0. Thus, f is
determined on Of = Of U fU f and g on D9 D= N D U D9 with (2.13) satisfied
on S = Pf nD9 as in the discussion above. Note that. our assumptions give f',g'
continuous on S.

Starting with the initial condition: t(0) = t0, solve9 (2.12) to obtain r. This
solution curve satisfies (2.10) and (2.6). Note that the solution curve r cannot leave
S before t = 7' by, e.g., crossing the characteristic: Is + t = eT + T - say, at a point
(t'.,t.) - since this would give, by (2.10):

~fT r t. = f -- f, +to.)-+-g(eo- t.)

f(et+T)+g(f +T-2t.)I [t _ g(tr - T)] + g(tT + T - 2t.),

contradicting the fact that q'J <r/2 < 1/2; similarly, r cannot leave S by crossing
- t = - Tj since If'I < 1/2. It follows that e(.) is well-defined on (0,TJ with

F(T) - r .

. 'rhis specification of T, F(.) defines QT. In view of (2.6), the geometry of F ensures

that Qr C AUATUS so f,q are both defined on all of Q. Now (2.8) gives a (weak)
solution v of (2.7) and the constr,,ction ensures that we also have (2.4), (2.5), (2.2),

(2.3) as desired. 1

')A solution exists since the ,i iht hand side of (2.12) is continuous in ( (as long as one remains in
S). Our assimptions do iot, give a I,ipschitz condition; thus uniqueness - not really needed for the
Theorem - would have to be obtained by a different argument: noting that (2.13) makes the right
hand side of (2.10) contractive in f.



Remarks: The regularity required for the data - continuity of vw 0 ,vT ,VT

canl be weakened by a limit argument. In this case one retains (2.6) although e may
no longer be continuous. There is also no really new difficulty in considering spatially
variable coefficients: pvu = (fv.,),. The argument must be modified in detail"0 but

is essentially similar in spirit.
It is worth noting that the construction in the proof above can be viewed from a

slightly different perspective. After solving on A0 and AT one fills in Cauchy data on
a 'gap' 9 so as to consider an initial value problem with the roles of t and s reversed
-- taking, say, v , vT (perhaps suitably extended to larger s) as boundary data. The
choice of data on . and the bounds (2.19) are such as to ensure that IvI < s: < I

which then makes the right hand side of (2.10) contractive in e so (2.10) determines
e(t) uniquely for each t. (One must also, of course, verify that this gives f(.) as an
'admissible control function'.)

Stated this way, it is clear that the argument does not really depend on the
" •linearity of (2.7) or on the possibility of a decomposition (2.8). Without providing
4"4 details, we note only that one can treat (2.1) from this point of view under quite mild

conditions on 0(.). If we set 0 := 1/51 , w = vi and u = 0(v,,) so v, = 0(u) we can
rewrite (2.1) in terms as a system:

(2.20) It, p, g ,lt ,, = (U)

suggesting the role-reversed problem. The crux of the argument, now, is to show that
'reasonable bounds' on the initial and target data can be imposed to ensure that one
will have (for a suitable construction of g and of the data there, satisfying m wt u)
the necessary bound: Iv, = - (u)l <K, to be able to apply the Contractive Mapping
Theorem to (2.10).. F1

3. TRANSVERSE VIBRATION

In this section we present an extremely brief introduction to the class of problems
which might be considered. As above, we consider the robot arm as a nominally

horizontal beam with a load In at the tip and with no dissipation or body forces (e.g.,
*ignoring friction, gravity, ... ). Here, however, we consider transverse vibrations. For

simplicity we consider only vertical vibration, so the principal unknown is the vertical
deflection u = t(t,s). Thus, the 'laboratory coordinates' of a material point s will
be jr, y, zj = [t() - s,0, u(1, .;)!. iirtier, we ignore shear and work with a linearized

1"E.g., Lhe clharact.eristics are w, ,. , 'Iraigh lines and the propagation along them1 may 110 longer
be coriutant. We now ruist. fike P I-, Ie a r,,,sIanl, less than the minsm'tm sound speed and impose a
nvore st.ringent condition (2. 19).

0



theory.'
We begin with thle 'clamped' boundary conditions at the prismatic joint:

(3.1 U . 0 at the joint: s= t)

Next, in this setting a geometric analysis shows that the stress deformation for a
segment ds of the beam is proportional to [radius of curvature)-2 so the strain energy
(elastic potential) is z: 3 IgU2, d~s where fl (sometimes written as El) corresponds to
stiffness. The corresponding kinetic energy is:

f")[ (j2 + U2) + ~ s±~r ~ ~ U2,I~

+enul bea equation'm2 ( 4-u'

(where Qa is ase aov-ecin(1)a nd thmenthe bnay condit' Pin iewon: nte

(3.3) mnu -lf a u,li:- (13u 49 a u,et ± flu,., 0 at the tip: s = 0.

'rte system, if the control function f (.) were specified, would consist of (3.2) with
(3. 1) and (3.3) together with initial conditions (2.4). We note here, however, that the
type of problem having particular control-theoretic significance is that which arises
when t(-) is determined in feedback form:

(3.4) t(t) = Ajlu(t, .)I,

i.e., one couples (3.4) with the other condi4~ons as an implicit characterization of thle
free boundary F.

4 In (3.4), we consider A[.1 as some suitable functional - presumably a function

4$(w) for some (finite) set of implementable observations:'13 W= C(uJ. For example,
one might take A to be of tile form AluJ = (Clul) with

''Ilse or . linrized stress-,'trati telainn is I Collsecliteice of the 1 11ndiment.,l hpe,Il11 .1-tilillphow~~

4, ~~~iiifiniitesimial' cross-section, giviing ii iinite'simiil deformlations. rthe sigiliiicantwt assum~ption is the Ilie
simiplifying butt rather restrictive meo t ha~t. the arum always remaiins straigh~t enotigh to ignore the

,qn-callerI 'geometric ,,onlinuearil ie"' - #ecenh~ally, that, olne cant aderqna.ely approximate Iracliin of
Ciur-vaturej 2 by u,., liear velocity l'v jf i #. iik 1, ang~ular velocity Iarct-att u, it by - ,etc.

"Note that the equation is jiit i i I ip ,Ilardl beamu equition wheii we upse s as the independetit;

variable. This formulation is sotmewhi dIifferrnt. from that. of 121.
"Alternatively, we imight consider A - (z) where z is the solution of an auxiliary system of the

form: i F(z,w).

.... ....... *% -



Such an observation operator C might be implementable by, say, visual observation
of the tip position and placing an accelerometer on the beam at s., allowing for the
(known) effect of the joint motion. This would give, as an example,

(3.6) f(t) = t(u (t, 0), uge(t,5.))

for some given function 4P
Once a specific form of the feedback functional A1.1 has been prescribed, the

problem is analysis' of the full system: (3.2), (2.4), (3.1), (3.3), and, e.g., (3.6) to
determine existence and uniqueness as well as such properties of control- theoretic
interest as stability.
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